
CRISPR/Cas9 genome editing technology

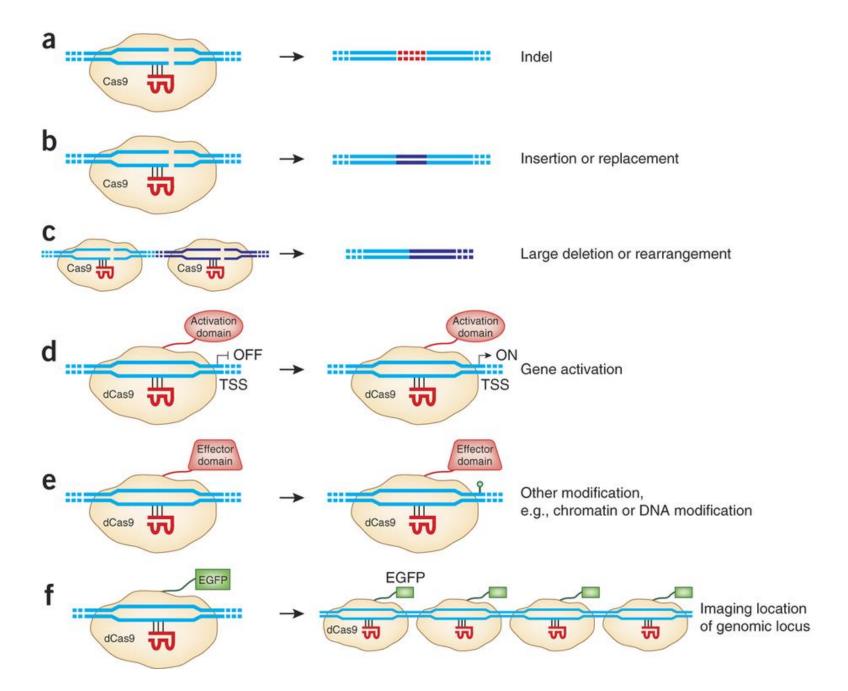
MIT CAB/ESCRO Meeting April 23, 2015

CRISPR system discovery

- clustered regularly interspaced, short palindromic repeat
- Repeat sequences first observed in 1987
- System Present in 40% of bacteria and 90% of archea
- Natural function
 - Bacterial "vaccination" observed in 2007 when repeated exposure of bacterium to phage lead to incorporation of phage sequence into bacterial genome repeats
 - <u>Science.</u> 2007 Mar 23;315(5819):1709-12.
 - Bacterial immune mechanism based on RNA guided nuclease activity
- Streptococcus pyogenes system adapted for genome editing

Key Components

- Guide RNA
 - crRNA sequence homology to target
 - tracrRNA fixed sequence
 - PAM sequence required for


- Endonuclease
 - Cas9

Adaptation for Gene Editing

- Only two components needed
 - RNA and Cas9 (protein)
- crRNA and tracrRNA combined
 - 'single guide' sgRNA

- Modified endonuclease activity of Cas9
 - DSB
 - Nickase
 - Catalytically dead retains ability to bind but cannot cleave target

Benefit over other genome editing technology

- Previously developed systems:
 - Protein-based with customizable DNA-binding specificities to create DSB-inducing nucleases
 - ZFN
 - TALEN
- RNA-guided nucleases (RGNs)
 - Rely on simple base-pairing rules to engineer specificity
 - Multiple targets can be edited at once
 - High throughput adaptability based on sgRNA libraries

Risks

- Off-target effects
 - Data varies on showing number of mismatches tolerated leading to off-target mutations (anywhere from 1 to 5 based on specific location in sgRNA)
 - Reported rate of mutation at off-target sites as high as 2-5% in human cells
 - In vitro Cas9 digestion of whole genome followed by sequencing yielded mutation rate of 0.1% (Nature Methods 12, 237–243 (2015)
 - Evidence that binding of Cas9 is promiscuous but nuclease activity is not (Nat Biotechnol. 2014 Jul;32(7):670-6)
- Presence of Cas9 alone
 - Studies have shown nickase Cas9 alone can induce indel mutations
- Delivery mechanisms
 - Potential for researcher exposure

Delivery technology

- Both RNA and Cas9 must be present in a cell to edit the genome
 - RNA forms:
 - In vitro transcribed
 - Encoded on plasmid or viral vector genome
 - Cas9 forms:
 - Purified protein
 - Encoded on plasmid or viral vector genome
- Mechanical (electroporation, microfluidics)
- Transfection
- Viral vector
- Microinjection

Mechanisms to reduce risk

- Reduced concentration of sgRNA and Cas9
 - Inducible expression of CRISPR components
 - Reduced copies of plasmid for electroporation
 - Results have shown either no change in off-target effects relative to on-target or some decrease
- Paired nickases or Cas9 dimerization
- Increased specificity of sgRNA
 - Changes in sgRNA length
 - Promoter sequence requirements
- Separation of delivery of sgRNA and Cas9

Other Considerations

DURC

 Introduction of CRISPR/Cas9 system into bacteria to alter its susceptibility to natural or engineered phage

Ethics of use in humans

- Edit genes in somatic cells
- Edit genes in embryo or germ line leading to heritable genetic modifications

Risk Assessment

- Delivery method
- Target and hypothesized outcome
- Temporal expression of CRISPR components
- Dosage of CRISPR components