Personal Protective Equipment (PPE) SOP

1. Purpose / Background
This SOP describes the procedures used by the Massachusetts Institute of Technology (MIT) to determine when personal protective equipment (PPE) may be required and outlines the steps to be taken in selecting, using, and maintaining appropriate PPE. These procedures are intended to support MIT’s Environmental Health & Safety Policy and comprise a portion of the MIT Environment, Health, and Safety Management System (EHS-MS). These procedures are also intended to address the requirements of OSHA 1910 Subpart I, with the exception of 1910.134 Respiratory Protection (as noted in Scope below).

Personal Protective Equipment (PPE) is used to create a barrier against workplace hazards and to protect individuals from the risk of injury or exposure. The term “PPE” is used to describe any safety gear one may wear on the body to protect exposed areas from hazards in the work area.

There are over 300,000 injuries annually to the hand, finger and foot in the United States. Additionally, there are 90,000 eye injuries, 70,000 head injuries, and 15,000 respiratory ailments, many of which could be prevented and/or mitigated by the proper use of personal protective equipment.

Personal protective equipment is not a substitute for engineering or administrative controls or good work practices, but should be used in conjunction with these controls to ensure the safety and health of employees.

2. Scope
This document applies to all Departments, Labs, and Centers (DLC’s) at MIT.

This SOP addresses eye, face, head, hearing, foot, and hand protection, but does not include respiratory protection. Please see the MIT Respiratory Protection Program regarding respiratory protection requirements.

3. Prerequisites
None.

4. Procedures
4.1. Conduct a Hazard Assessment
4.1.1 Supervisors, PIs, or personnel they designate must identify and assess the hazards in the workplace to determine protective measures required. The EHS Office is available to assist with these assessments on request.

4.1.1.1 For laboratories or work areas operating under an approved Chemical Hygiene Plan, the written plan and lab specific chemical SOPs constitute the written hazard assessment for that work area for all processes covered by these documents. If there are unusual hazards not covered in the CHP or a lab specific SOP, there should be a
separate assessment using the Job Hazard Analysis form in Appendix B.

4.1.1.2 For other areas considered “Hazard Communication Areas” (e.g. Division of Student Life areas and Department of Facilities operations), or otherwise not covered under a Chemical Hygiene Plan, the Supervisor shall complete a Job Hazard Assessment using the Form in Appendix B, or equivalent. This form should be maintained on file.

4.1.1.3 Review Appendix A for typical tasks or situations requiring the use of personal protective equipment.

4.1.1.4 Consult the MIT Radiation Protection Program’s “Required Procedures for Radiation Protection” to determine the personal protective equipment that is needed for work with radioactive materials.

4.1.2 Conduct a walk through and survey each work area to identify tasks that involve potential hazards, including chemical, biological, radiological, and various physical hazards (impact, penetration, compression, heat, dust, electrical sources, and material handling).

4.1.3 Evaluate the hazards associated with performing the individual tasks as well as hazards posed to those in the area while the task is being performed. Review past injuries, job/task operating instructions, previous job hazard analyses, material safety data sheets, and equipment vendor recommendations.

4.1.4 Assess the area/environment in which the task is being performed for additional and/or new hazards.

4.1.5 Determine when and what type of personal protective equipment is required for these areas or tasks.

4.1.6 Certain clothing may be inappropriate for some tasks such as loose clothing, high heels, short sleeve shirts, shorts, open toed shoes or sandals. Identify and document these situations as well. Note that per prudent laboratory practice and MIT’s Chemical Hygiene Plan, open-toed shoes or sandals are not allowed in the laboratory. This prohibition extends to other work areas where there is the potential for foot injury due to chemical spills, work with heavy objects, or equipment with moving parts near the foot. Electrical workers should only wear clothing approved by NFPA.

4.1.7 Ensure the hazard assessment certification is documented with tasks, task locations, the identification of the person assessing, and the dates of assessment.

4.1.8 An assessment of an area, such as a machine shop or chemical lab, may result in the requirement to wear safety glasses with side shields for all personnel entering that area regardless of the task being performed at that moment. Ensure these areas are properly posted.

4.2. Select and Provide Personal Protective Equipment

4.2.1 The Supervisor/PI is responsible for selecting PPE required, based on the hazard assessment. The DLC must provide PPE needed in the DLC. The PPE provided must fit the employee properly. The EHS Office is available to assist with selecting appropriate PPE.

An official hardcopy of this document exists in the EHS Office or on the EHS website. See Legal Disclaimer at: http://ehs.mit.edu/site/content/legal-disclaimer
4.2.2 **Select and wear appropriate eye and face protection.** OSHA regulations (29 CFR 1910.133) require eye protection whenever and wherever potential eye hazards exist. The eye protection provided and used must meet ANSI requirements, as noted in 4.2.3.1 below. Hazards requiring eye and/or face protection include: flying particles; molten metal; liquids including acids or caustic materials, biological or radioactive materials; chemical gases or vapors; and potentially injurious light radiation. These and other eye hazards may exist in labs, shops, mechanical rooms, construction sites, hazardous material storage areas, emergency zones, etc. Specific guidance for the selection of eye protection is provided in Appendix A and D.

DLCs are responsible for providing eye protection to anyone who works in, studies in, or visits in an area where there are hazards to the eyes. DLCs are responsible for providing prescription safety glasses for employees who need them to perform their job duties. The procedure for obtaining prescription safety glasses is detailed in Appendix E. In situations where there is a way to clearly separate non-hazardous from hazardous areas or tasks, DLCs may choose to only require eye protection when and where eye hazards exist.

Wear eye protection whether you are working with a hazardous material, observing, or visiting. This is because the statistics on eye injuries show that a very high percentage of injuries occur when something strikes the eye from the side, i.e., not due to your activity. Eye hazards could be released when something explodes, implodes, spills, breaks, falls, or by activities that produce chips, dust, and other flying particles.

Working in or visiting any space that is posted with the sign "Eye Protection Required" or equivalent requires the use of eye protection. Use safety glasses with side shields as basic eye protection for handling chemicals where there is a low risk of splash or splatter. When pouring large amounts of chemicals, observing processes that are under heat, vacuum, or pressure, making adjustments to chemical containing apparatus, or performing other operations or tasks with a moderate to high potential splash risk or severe consequences in the event of a splash, chemical goggles (only with indirect vents) should be used. A face shield can be used with the glasses or goggles to protect the face under these circumstances.

Only wear eye protection that meets the ANSI standard for impact resistance (ANSI Z87). Don’t rely on “visitor” safety glasses or normal prescription glasses, as these models do not have the same impact resistance.

4.2.3 **Select and use appropriate equipment for protection of skin.**

Skin Protection. OSHA requirements are that protective clothing and equipment, including personal protective equipment such as gloves for extremities, shall be used wherever it is necessary by reason of hazards of processes or environment, chemical hazards, radiological hazards, or mechanical irritants encountered in a manner capable of causing injury or impairment in the function of any part of the body through absorption, inhalation, physical content, or temperature extremes. Clothing and
equipment must be selected based on the hazard assessment. The clothing/equipment must fit the employee.

Work with pyrophoric, spontaneously combustible, or extremely flammable chemicals presents an especially high potential for fire and burn risks to the skin. EHS recommends the use of fire retardant or fire resistant lab coats to provide additional skin protection where the individual will be working with these chemicals.

Of particular concern is the selection of appropriate gloves for hand protection. Gloves selected for physical hazards such as temperature extremes or sharp surfaces are not appropriate for chemical hazards. With respect to chemical hazards, there is no one glove that can provide an impermeable barrier to all chemicals, so the glove material must be selected based on the specific chemicals used, especially for operations involving significant potential for skin contact with chemicals that may severely damage or readily penetrate the skin. Guidance on glove selection can be found in Appendix C. Noted below are special circumstances regarding gloves.

4.2.3.1. Reusable gloves. In general, EHS does not advocate the reuse of protective gloves, particularly if the glove is the single method of skin protection against hazardous chemicals, biological agents, or radioactive materials. Often disposable gloves are used in the laboratories for small amounts of chemicals, or for work with biological or radioactive materials, and these should never be reused. For reusable gloves, some DLCs have developed a policy that allows for reuse of gloves in very specific cases (e.g., a second glove layer for work in clean room environments). If protective gloves will be reused, the following precautions are advised: a) gloves are rinsed after each use; and b) the DLC shall train the user in methods to inspect the glove for integrity. The combination of look-listen-feel (look for visible pinholes or tears; listen and feel for pinholes or tears by running air into the glove) is encouraged.

4.2.3.2. Nanotechnology. The particle sizes associated with nanomaterials (in at least one dimension are less than 100 nanometers or 0.1 microns) are capable of being absorbed through the skin. DLCs engaged in work with nanomaterials shall review the work tasks or research for potential skin exposure and select protective gloves appropriate for the exposure. If the nanomaterial is carbon, or another material normally considered nonhazardous, then latex or nitrile gloves may form an adequate barrier.

4.2.4 Based on the hazard assessment certification, purchase the selected personal protective equipment. PPE must conform to the updated ANSI standards which have been incorporated into the OSHA PPE regulations, as follows: 4.2.4.1. Eye and Face Protection ANSI Z87.1-1989
4.2.4.2. Head Protection ANSI Z89.1-1986
4.2.4.3. Foot Protection ANSI Z41.1-1991
4.2.4.4. Hand Protection- No ANSI standard exists for glove selection; nonetheless, the selection must be based on the hazard.

4.2.5 Provide and ensure availability of PPE to individuals requiring protection.
4.2.6 PPE must fit the employee. Consideration should also be given to comfort and fit of PPE in order to ensure that it will be used.
4.2.7 Ensure provisions for proper storage, cleaning and maintenance have been made using equipment vendor recommendations.

4.3. Use, Maintenance, and Storage of PPE
4.3.1 All PPE should be used and maintained as directed by supplier/manufacturer.
4.3.2 Disposable PPE must not be reused.
4.3.3 Reusable PPE must be cleaned after use, and stored properly so that it is protected from becoming contaminated when not in use.

4.4 Train Individuals
4.4.1 PIs/Supervisors shall ensure individuals have been trained in the proper selection, use, care, storage and maintenance of the required personal protective equipment.
4.4.2 PIs/Supervisors shall ensure training is documented with names of trainer, trainee and dates of training. A copy of this documentation should be provided to the EHS Office.

4.5 Inspection
4.5.1 Supervisors inspect to ensure individuals use the equipment necessary. EHS may also periodically inspect for proper use of equipment.
4.5.2 Employees are to inspect equipment for cleanliness, fit, and possible damage before each use, and replace if needed.
4.5.3 Supervisors replace stocks of equipment or arrange for repair of defective equipment, when appropriate, by authorized and trained personnel.

5 Roles & Responsibilities
5.1 Department, Laboratories and Centers (DLC’s)- have the responsibility to ensure that:
5.1.1 Documented safety assessments are conducted (except for areas operating under a Chemical Hygiene Plan as noted above) to determine when personal protective equipment is required.
5.1.2 Individuals required to use personal protective equipment have been trained in the proper selection, use, care and maintenance. For areas operating under a Chemical Hygiene Plan, training may be accomplished through general and/or laboratory-specific chemical hygiene training.
5.1.3 There is adequate funding so that required personal protective equipment is provided and maintained.
5.1.4 MIT EHS is contacted if there is a need for assistance regarding the assessment, selection and use of personal protective equipment.

Note: The DLC EHS Coordinator can assist with meeting the above DLC responsibilities are addressed.
5.2 **DLC Supervisors/PIs are responsible for:**
 5.2.1 Conducting job hazard assessments.
 5.2.2 Assuring required PPE is available, used, and maintained.
 5.2.3 Providing equipment and space to assure protected storage of PPE when it is not being used.
 5.2.4 Training employees in proper use, care, and maintenance of PPE, and documenting that training.
 5.2.5 Replacing PPE as needed.
 5.2.6 Contacting the EHS Office for assistance, if needed, for assessments or PPE selection.

5.3 **Environmental Health and Safety Office** is responsible for ensuring that:
 5.3.1 Professional assistance is available regarding the assessment, selection and use of personal protective equipment.
 5.3.2 Training in the proper selection, use, care and maintenance of personal protective equipment is available.
 5.3.3 The effectiveness of the program is evaluated on a periodic basis.

5.4 **Individuals Using Personal Protective Equipment** have the responsibility to:
 5.4.1 Wear required PPE.
 5.4.2 Attend required training session.
 5.4.3 Use, care for and maintain personal protective equipment as trained and as recommended in equipment instructions.
 5.4.4 Store personal protective equipment in a protected manner such that it does not become contaminated when it is not being used.
 5.4.5 Notify supervisor when PPE has become deteriorated or defective.

6. **Training**
 6.1 All employees who wear PPE will receive job specific training.
 6.2 Training will be provided by the employee’s DLC/supervisor, or their designee.
 6.3 Training will include but is not limited to: 1) When PPE is necessary, 2) What PPE is necessary, 3) How to don, doff, adjust, and wear PPE, 4) the limitations of PPE, 5) the proper care, maintenance, life-span, and disposal of PPE.

7. **Monitoring Requirements**
 7.1 Hazard Assessments should be updated when new hazards are introduced or when processes are added or changed.
 7.2 When a specific type/form of PPE requires a testing and monitoring schedule (e.g., gloves for high voltage electrical work), the maintenance schedules shall be followed accordingly.

8. **Record Management**
 8.1 Hazard Assessments shall be retained in accordance with the EHS Records Retention SOP.

9. **References**

An official hardcopy of this document exists in the EHS Office or on the EHS website.
See Legal Disclaimer at: http://ehs.mit.edu/site/content/legal-disclaimer
9.1 Standards
9.1.2 American National Standards Institute, American National Standard ANSI Z87.1-1989, "Practice for Occupational and Educational Eye and Face Protection".
9.1.3 American National Standards Institute, American National Standard ANSI Z89.1-1986, "Safety Requirements for Industrial Head Protection".
9.1.5 OSHA Standard 29 CFR 1910.133, "Eye and Face Protection"
9.1.6 OSHA Standard 29 CFR 1910.135, "Head Protection"

9.2 Other SOP/ SOGs
9.2.1 Respiratory Protection SOP
9.2.2 EHS Records Retention SOP

9.3 Other MIT EHS References
9.3.1 Hearing Protection Program
9.3.2 Personal Protective Equipment Program
9.3.3 Respiratory Protection Program
9.3.4 Chemical Hygiene Program
9.3.5 Hazard Communication Program
9.3.6 Exposure Control Plan
9.3.7 Biological Project Registration
9.3.8 Required Procedures for Radiation Protection

10. Definitions
10.1 Safety Glasses- equipment which protects the eyes or face or both and meets ANSI standard Z87.1

10.2 Hard Hat- equipment which protects the head and meets ANSI standard Z89.1

10.3 Safety Shoes- equipment which protects the foot and meets ANSI standard Z41

10.4 Hazard Assessment for Personal Protective Equipment – documented review of requirements for the protection of the eyes, hand, body, ear, and foot.
Appendix A

Personal Protective Equipment- Typical Requirements

The following summary indicates when personal protective equipment is typically required. A documented hazard assessment must be conducted to formally determine these requirements.

Eye and Face Protection- Typical hazards requiring eye and face protection such as safety glasses with side shields, goggles, face shields or welding and laser lenses include:

- Facilities/Shop Work including torch soldering, welding, brazing, cutting, machining, grinding or other mechanical work
- Work involving handling solids, liquids, or gases that are corrosive, flammable, or toxic, including vapors of such materials
- Work with any material under pressure (positive or negative). This includes working with inert gases, and performing tasks using pressurized containers (e.g., vacuum filtration).
- Biological Laboratory work where there is a risk of splash or splatter involving Risk Group 2 (RG2) and higher agents including human blood or blood products, human tissue, and human cells including primary and established human cell lines
- Radiation Laboratory work including radioactive materials/radioisotopes
- Laser work using Class 3a, 3b, or 4 lasers or unshielded or non interlocked hazardous beams
- Electrical work

Head Protection- Typical hazards requiring head protection such as hard hats, bump hats or head covers include:

- Construction work in areas where there is the potential for injury from falling objects
- Electrical work where there is potential for exposure to powered lines
- Chemical work where there is danger from liquid spills from above
- Work in places with overhead obstructions
- Work in areas where long hair may get caught in moving machinery

Foot Protection- Typical hazards requiring foot protection such as chemical resistive, metal toed, metatarsal outfitted, leggings, electrical dissipative and anti slip shoes include:

- Materials handling work where there is danger from falling or rolling objects or contact with moving powered equipment
- Construction work where there is risk of sharp objects and uneven terrain
- Chemical work where there is danger of chemical spills and exposure
- Electrical work where there is potential exposure to powered lines

Hand Protection- Typical hazards requiring hand protection such as thermally rated, chemical specific resistant, electrically rated, leather, elbow length, or cut resistant glove include:
- Laboratory work involving exposure to hazardous chemicals or biological materials
- Electrical work with potential exposure to energized equipment
- Shop/facilities work with cut, laceration potential to the hand
- Thermal work with temperature extremes of hot or cold

Body Protection- Typical hazards requiring body protection such as lab coats, welding leathers, aprons, disposable uniforms, cleanable uniforms and full body suits include:
- Facilities/Shop work including open torch, welding, brazing, cutting, machining, grinding
- Laboratory work handling hazardous/toxic/radioactive or biological materials
- Construction work involving exposure to ordinary work debris
- Pilot scale operations involving potential exposure to larger amounts of chemicals
- **NOTE:** EHS recommends the use of flame retardant or flame resistant labcoats for work with pyrophoric, spontaneously combustible or extremely flammable chemicals.

Hearing Protection- Typical hazards requiring hearing protection such as earplugs or earmuffs include:
- Facilities/Shop work or work in areas containing open torch, welding, brazing, cutting, machining, grinding, boilers, furnaces or HVAC activities
- Construction work involving pneumatic hammers, sawing, and drilling Laboratories using ultrasonicators.
- High noise areas (> 85db) as identified as part of a Hearing Conservation Program.
- **Rule of thumb**- If you are unable to hear someone speaking at a normal volume that is within 2 feet of distance from you- that area may be above 85 db. Contact MIT Industrial Hygiene Program for noise monitoring.
Personal Protective Equipment

Hazard Assessment Form

(EHS/MIT)

When personal protective equipment to include eye protection, gloves, protective clothing, or other protective apparel is needed for a job, there must be a written hazard assessment. This form can be used for that purpose. Once completed, the form should be kept on file for the work area involved. It can be used as a tool for training new employees regarding the hazards associated with their work and the personal protective equipment required for the job. They should also receive training on the correct use, maintenance, and limitations of the equipment.

Location: ___________________________ Date: ________________

DLC: ___________________________ Supervisor/P.I. ________________

<table>
<thead>
<tr>
<th>Work area/job/task or experiment</th>
<th>Hazard(s)</th>
<th>Personal Protective Equipment</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C
Hand Protection Selection Guide

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Glove</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological research work</td>
<td>Disposable gloves.</td>
<td>Nitrile glove or latex* glove offers a good barrier for most lab research.</td>
</tr>
<tr>
<td>Bloodborne pathogens.</td>
<td>Disposable gloves.</td>
<td>Nitrile glove or latex* glove offers a good barrier for most lab research or clinical application.</td>
</tr>
<tr>
<td>Chemical contamination – low level. Example includes small drips on the side of beaker or test tube.</td>
<td>Disposable Nitrile glove, 6 mil thickness or greater.</td>
<td>Disposable nitrile glove, 6mil or greater, is resistant to a broad range of chemicals and is more puncture proof and abrasion resistant than natural rubber or vinyl disposable gloves. It is the glove of choice for low-level chemical contamination. When any disposable glove becomes significantly contaminated with chemical, it should be immediately removed and discarded and the hands should be washed thoroughly. New gloves should be put on before proceeding with work.</td>
</tr>
</tbody>
</table>
| Chemical contamination – High level or high hazard, e.g. pouring acid, work involving immersion of hands in chemical, work with toxic chemicals that readily penetrate the skin. | Chemical resistant glove | Contact EHS for assistance with selecting the best glove for these circumstances.
Visit www.chemrsest.com for additional info. |
| Hot surfaces, e.g., steam pipes, items from autoclaves, welding operations. | Heat resistant gloves. | Gloves can prevent burns. |
| Handling knives or sharp objects such as box cutters. | Sturdy work glove or metal mesh glove. | The best glove will depend on the circumstances for which cutting tools are being used. |
| Material Handling, e.g. carrying supplies, moving furniture, removing debris from a work-site, handling wood or sheet metal. | Sturdy work gloves. | Use of gloves will prevent cuts and splinters from these activities. |
| Radioactive materials in the laboratory. | Disposable glove. | Nitrile glove or latex* glove offers a good barrier for most lab research. |

Some employees may be allergic to latex containing materials. These employees should be offered other options for hand protection under these circumstances, e.g., nitrile or vinyl disposable gloves.
Appendix D: Eye Protection Selection Guide

Wearing eye protection is an important safety practice. Selecting the correct type to protect your eyes is equally important. Contact the EHS Office for advice to choose the appropriate eye protection for the hazard(s), as described in the table below. Types of protective eyewear include:

- safety glasses with side shields (built in or clip on)
- goggles for chemical splash, mist should have indirect vents
- goggles for chips, dust should have direct vents
- face shields should be considered for work with chemicals or materials with a high potential for splashing or otherwise injuring the face.

Environment Health and Safety programs are abbreviated:

<table>
<thead>
<tr>
<th>Environment Health and Safety programs</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSP- Biosafety Program</td>
<td>BSP</td>
</tr>
<tr>
<td>IHP- Industrial Hygiene Program</td>
<td>IHP</td>
</tr>
<tr>
<td>RPP - Radiation Protection Program</td>
<td>RPP</td>
</tr>
<tr>
<td>SP - Safety Program</td>
<td>SP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard to eyes, face and neck</th>
<th>Type of Protective eyewear</th>
<th>EHS Program lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical splash, liquid</td>
<td>Goggles with indirect vents Also Face shield if necessary</td>
<td>IHP (note 1)</td>
</tr>
<tr>
<td>Chemicals, dry</td>
<td>Safety glasses</td>
<td>IHP (note 1)</td>
</tr>
<tr>
<td>Chips, particles, dust, glass shards</td>
<td>Safety glasses</td>
<td>SP</td>
</tr>
<tr>
<td>Potentially infectious material splash</td>
<td>Goggles and Face shield</td>
<td>BSP contact for DLC</td>
</tr>
<tr>
<td>Radioactive Materials (liquid or powder)</td>
<td>Safety glasses</td>
<td>RPP contact for DLC</td>
</tr>
<tr>
<td>Lasers</td>
<td>laser glasses and goggles that meet ANSI Z136.1</td>
<td>RPP contact who reviewed the laser (note 3)</td>
</tr>
<tr>
<td>Ultraviolet light</td>
<td>Face shield that is specially treated</td>
<td>RPP contact for DLC (note 3)</td>
</tr>
<tr>
<td>Other light sources</td>
<td></td>
<td>RPP contact for DLC (note 3)</td>
</tr>
<tr>
<td>Furnaces, molten metal or glass, heat, sparks, glare</td>
<td>Goggles, Reflective Face shield.</td>
<td>SP (note 2)</td>
</tr>
<tr>
<td>Welding</td>
<td>Welding goggles, helmet or face shield</td>
<td>SP/ IHP (note 2)</td>
</tr>
</tbody>
</table>

Note 1: If you will need to wear a full face respirator and prescription glasses, you can order prescription lenses that fit into the respirator, which you order from IHP (Respiratory Protection).

Note 2: If you will need to wear a welding goggle, helmet or face shield and prescription glasses, you can order prescription lenses that fit into the filter shade lenses.

Note 3: Prescription safety glasses can be made with lenses designed for working with lasers. An alternative is to purchase a pair of laser safety glasses that can be used by every laser user. Then some people could wear these over their prescription glasses. Laser safety training is required before using a laser.
Appendix E
Prescription Safety Glasses- Ordering Procedure

To obtain prescription safety glasses:

- Obtain approval from your supervisor to order prescription safety glasses.
- Obtain a department requisition (not required for Facilities).
- Take a recent prescription (less than one year old) to MIT Optical Shop (W20-027 X 8-5367).
- Select a style of frame from the approved selection.
- Mail or bring a completed order and requisition form to the EHS Office at N52-496.
- EHS will contact you when the glasses arrive.
- Take the glasses to the MIT Optical Shop (W20-027) where the optician will verify the prescription and assure proper fit.
- If the glasses break, are scratched or the prescription changes follow the above procedure to obtain a replacement pair.

Ensure side shields are provided and used when there is danger of flying objects.